www.nature.com/bjp

Disparate ligand-mediated Ca^{2+} responses by wild-type, mutant $Ser^{200}Ala$ and $Ser^{204}Ala$ α_{2A} -adrenoceptor: $G_{\alpha 15}$ fusion proteins: evidence for multiple ligand-activation binding sites

*,1P. J. Pauwels & 1F. C. Colpaert

¹Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin 81106 Castres Cédex - France

- 1 Ligand: receptor interactions were analysed at wt, mutant $Ser^{200}Ala$ and $Ser^{204}Ala$ α_{2A} ARs by measuring Ca^{2+} responses in CHO-K1 cells either by co-expression with a $G_{\alpha 15}$ protein or at a receptor: $G_{\alpha 15}$ protein stoichiometry of 1.0 using fusion proteins.
- 2 The magnitude of the UK 14304-mediated Ca^{2+} response as elicited by a $G_{\alpha15}$ protein was largest with both mutant $Ser^{200}Ala$ and $Ser^{204}Ala$ $\alpha_{2A}ARs$ compared to the wt α_{2A} AR in the co-expression and fusion protein experiments.
- 3 The activation profiles of the wt and both mutant α_{2A} ARs as analysed by a series of α_2 AR agonists differed. d-Medetomidine and clonidine appeared most efficacious at the Ser²⁰⁴Ala α_{2A} AR, whereas oxymetazoline was also partially active at the Ser²⁰⁰Ala α_{2A} AR. Talipexole was silent at both mutant α_{2A} ARs. The intrinsic activity of (—)-adrenaline was either absent or partial at the Ser²⁰⁴Ala and Ser²⁰⁰Ala α_{2A} AR, respectively. This latter observation is related to its lower binding affinity for both mutant α_{2A} ARs.
- 4 Ligands characterized as antagonists at wt and Ser²⁰⁰Ala α_{2A} ARs demonstrated either no intrinsic activity (i.e., RX 811059) or positive efficacy with a different rank order of maximal response at the Ser²⁰⁴Ala α_{2A} AR (atipamezole=SKF 86466=idazoxan>dexefaroxan) than Asp⁷⁹Asn α_{2A} AR (atipamezole>idazoxan \simeq SKF 86466>dexefaroxan) and Thr³⁷³Lys α_{2A} AR (SKF 86466>atipamezole \simeq idazoxan>dexefaroxan). These effects were only observed in the coexpression experiments at concentrations in line with their binding affinities.
- 5 In conclusion, these Ca^{2+} data suggest that multiple activation binding sites exist for these ligands at the α_{2A} AR, and that their activation may be affected in different ways by the mutations being investigated.

British Journal of Pharmacology (2000) **130**, 1505–1512

Keywords: Recombinant human α_{2A} AR and $G_{\alpha 15}$ protein; fusion protein; mutagenesis; Ca^{2+} response; intrinsic ligand activity; diverse signalling

activity, diverse signal

Abbreviations: α_2 AR, α_2 -adrenoceptor; RX 811059, 2-(2-ethoxy-2,3-dihydro-benzo[1,4]dioxin-2-yl)-4,5-dihydro-1*H*-imidazole; RX 821002, 2-(2-methoxy-2,3-dihydro-benzo[1,4]dioxin-2-yl)-4,5-dihydro-1*H*-imidazole; SKF 86466, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1*H*-3-benzazepine; UK 14304, 5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline tar-

Introduction

 $\alpha_2\text{-Adrenoceptors}\ (\alpha_2\ ARs)$ are implicated in the control of noradrenergic and non-noradrenergic neurotransmission in the central nervous system and modulate several physiological processes peripherally (Timmermans et al., 1990; French, 1995; Szabadi & Bradshaw, 1996). There are now three characterized α_2 AR subtypes: α_{2A} , α_{2B} and α_{2C} ; these are G protein-coupled receptors which are predominantly coupled to the G_{i/o} signalling system, inhibiting and/or stimulating the activity of adenylate cyclase, inhibiting the opening of voltage-gated Ca²⁺ channels and activating K⁺ channels (see Hein & Kobilka, 1997). The α_2 ARs may also couple to other intracellular pathways involving Na⁺/H⁺ exchange and the activation of phospholipase A2, C and D (Limbird, 1988; Cotecchia et al., 1990; Fraser et al., 1989; Kukkonen et al., 1998; McNulty et al., 1992). The α_2 AR subtypes are distributed differentially in cells and tissues (MacDonald et al., 1997), endowing these

receptors with different physiological functions and pharmacological activity profiles. However, most available ligands have only marginal α_2 AR subtype selectivity.

Several reports (Wang et al., 1991; Eason et al., 1994; Airriess et al., 1997; Rudling et al., 1999) have shown that both naturally occurring and synthetic agonists may induce agonistspecific α_{2A} AR-mediated responses. This specificity was based on coupling of the α_{2A} AR to different second messenger pathways. We recently analysed ligand-mediated Ca²⁺ responses between wt, Asp⁷⁹Asn and Thr³⁷³Lys α_{2A} ARs by examining their coupling to a single signal transduction pathway via a $G_{\alpha 15}$ protein (Pauwels & Colpaert, 2000). The data suggest that most of the α_2 AR antagonists may actually possess partial agonist activity, which is augmented by the facilitating Asp⁷⁹Asn and Thr³⁷³Lys α_{2A} AR mutations. A different rank order of maximal responses was observed for the agonists and putative antagonists being investigated between the wt and Asp⁷⁹Asn α_{2A} ARs, and between Asp⁷⁹Asn and Thr $^{373}\text{Lys}~\alpha_{2A}$ ARs. Therefore, some of these ligands activate the α_{2A} AR via a specific binding site, which can be influenced by the Asp⁷⁹Asn and/or Thr³⁷³Lys α_{2A} AR mutations. We

^{*}Author for correspondence; E-mail: peter.pauwels@pierre-fabre.com

concluded that there are probably multiple molecular mechanisms to activate a single α_{2A} AR subtype. Thus, pharmacological diversity not only occurs between various receptor subtypes, but may also occur at a single α_{2A} AR subtype.

In the present study, analyses of ligand:receptor interactions were made at Ser²⁰⁰Ala and Ser²⁰⁴Ala α_{2A} ARs. Previous studies (Strader et al., 1989; Wang et al., 1991; Hwa & Perez, 1996) have emphasized the importance of conserved serine residues in transmembrane domain V of adrenoceptors in possible hydrogen bond interactions with the para- and metahydroxyl groups of the phenyl ring of catecholamines in activation processes. Studies on the α_{2A} AR suggest that only Ser²⁰⁴, which is thought to interact with the *para*-hydroxyl of the catecholamine ring, appears to contribute partially to agonist-binding and receptor activation. Ser²⁰⁰ does not appear to be directly involved in receptor activation in contrast to the corresponding serine residue (Ser²⁰⁴) in the β_2 AR, which has been postulated to interact with the meta-hydroxyl group of catecholamines. Recently, Ser²⁰⁴ has been shown to prevent meta-octopamine from generating a receptor-agonist conformation that can increase cyclic AMP levels, illustrating the importance of this residue in the agonist-specific coupling of the α_{2A} AR to different second messenger systems (Rudling et al., 1999). The present report considers the agonist properties of several imidazoline derivatives, the azepine derivative talipexole and putative α_2 AR antagonists by comparing wt and both mutant Ser 200 Ala and Ser 204 Ala α_{2A} ARs under conditions of co-expression and fusion with a $G_{\alpha 15}$ protein. The fusion protein approach was chosen to exclude differences in receptor coupling efficacy to the $G_{\alpha 15}$ protein and to quantify intrinsic activities of ligands under controlled experimental conditions of a fixed receptor: $G_{\alpha 15}$ protein ratio of 1.0 (Pauwels et al., 2000a). Experiments were also performed in parallel by co-expression of the mutant α_{2A} ARs with a $G_{\alpha 15}$ protein. We previously observed that the amplitude of the intrinsic activity of a partial agonist at wt α_{2A} AR was greater in co-expression than fusion protein experiments (Pauwels et al., 2000). The data support disparate ligand-mediated Ca²⁺ responses by wt and mutant α_{2A} ARs. These data are compared with the Ca²⁺ data as obtained by fusion of the Asp⁷⁹Asn α_{2A} AR and Thr $^{373}Lys~\alpha_{2A}$ AR to a $G_{\alpha15}$ protein. Multiple ligandactivation binding sites exist at the α_{2A} AR; their activation is affected in different ways by the mutations being investigated.

Method

Construction of mutant α_{2A} ARs and their fusion to a $G_{\alpha 15}$ protein

The mutant Ser²⁰⁰Ala α_{2A} AR cDNA (T⁶⁰⁰CG to GCG codon) was generated starting from the wt human α_{2A} AR (R.C: 2.1.ADR.A2A, Genbank accession number: M23533) cloned in a pCR3.1 expression plasmid as previously described (Wurch *et al.*, 1999) by using a Quick Change site-directed mutagenesis kit according to the supplier's instructions. The fusion of the mutant Ser²⁰⁰Ala α_{2A} AR to a $G_{\alpha15}$ protein (Genbank accession number: M80632) was realized in two steps. First, the stop codon of the Ser²⁰⁰Ala α_{2A} AR cDNA was exchanged by PCR for an alanine as part of a *NotI* restriction site in frame with its coding sequence; a *NotI* site was also inserted at the 5' end of a $G_{\alpha15}$ protein cDNA according to its reading frame. Second, the fusion of the mutant Ser²⁰⁰Ala α_{2A} AR to the $G_{\alpha15}$ protein was made after *NotI* restriction of both plasmids and subsequent ligation, as previously described (Pauwels *et al.*, 2000b). The

resulting fusion protein consists of the mutant $Ser^{200}Ala \ \alpha_{2A} AR$ in which the stop codon has been replaced by an alanine, followed by two additional alanine residues generated by the *NotI* restriction site and by the entire $G_{\alpha15}$ protein coding sequence. The mutant $Ser^{200}Ala \ \alpha_{2A} AR$ and the $Ser^{200}Ala \ \alpha_{2A} AR$: $G_{\alpha15}$ fusion protein cDNA were cloned into a pCR3.1 plasmid and fully sequenced on an ABI 310 Genetic Analyser, confirming the respective nucleotide sequences. The mutant $Ser^{204}Ala \ \alpha_{2A} AR$ cDNA ($T^{612}CC$ to GCC codon) was constructed and fused to a $G_{\alpha15}$ protein cDNA in a similar way. Fusion of the mutant $Asp^{79}Asn_{\alpha2A} AR$ and AR and AR (Pauwels and Colpaert, 2000) to a AR of AR stop codons for a *NotI* restriction site and subsequent ligation as described above.

Measurement of intracellular Ca²⁺ responses

Subconfluent CHO-K1 cells were transiently transfected by electroporation (Bio-Rad electroporator: 250 mV, 250 μ F) with the indicated receptor and/or $G_{\alpha 15}$ protein construct (10 µg of each plasmid) and plated into 96-well plates with 0.2 ml nutrient mixture Ham's F12 plus 10% heat-inactivated foetal calf serum and 1% DMSO at about 60,000 cells per well. Cells were assayed for intracellular Ca2+ responses between 24-48 h upon transfection as previously described (Pauwels et al., 2000b). The culture medium was removed by aspiration and replaced by 0.1 ml of complete growth medium containing 20 mm HEPES, 2.5 mm probenicid acid and 2 µm Fluo 3 fluorescent calcium indicator dye for 1 h. Cells were washed and fluorescent readings were made for 3 min every 2 s using a fluorometric imaging plate reader (FLIPR, Molecular Devices). Maximal fluorescent counts were used to determine agonist activity. The instrument software normalizes the fluorescence reading to give initial readings for each well at time zero. Ca2+ responses were systematically measured in either the absence (basal) or presence of either 10 μ M (-)-adrenaline or 1 μ M UK 14304, and the difference with the basal condition was defined as the maximal Ca²⁺ response. E_{max} values of ligand responses were referred to the maximal response as mediated by 10 μ M (-)-adrenaline for wt, mutant Asp⁷⁹Asn and Thr³⁷³Lys α_{2A} ARs. In case of Ser 200 Ala and Ser 204 Ala α_{2A} ARs, responses were referred to the maximal response as mediated by 1 μ M UK 14304. pEC₅₀ values were defined as the ligand concentration at which 50% of its own maximal stimulation of Ca2+ response was obtained. In antagonist experiments, (+)-RX 811059 (1 µM) was coincubated with the agonist. pK_B values were calculated as $K_B = B/(A'/A)-1$ where B is the concentration of the antagonist, and A and A' are the EC_{50} values of the agonist measured in either the absence or presence of antagonist, respectively. Statistical analysis was performed by one-way analysis of variance followed by all pairwise multiple comparison procedures (Tukey-test).

Ligand binding assay to α_{2A} -adrenoceptors

Membrane preparations of the transfected CHO-K1 cells were prepared in 50 m Tris-HCl pH 7.6 as previously described (Wurch *et al.*, 1999). Binding assays were performed with 0.3 – 10 or 100 (Ser²⁰⁴Ala α_{2A} AR) nM [³H]-(1,4-[6,7(n)-[³H]-benzodioxan-2-methoxy-2-yl)-2-imidazoline hydrochloride (RX 821002). Incubation mixtures consisted of 0.4 ml cell membranes (30 μ g protein), 0.05 ml radioligand and 0.05 ml of compound or phentolamine (10 μ M) to determine nonspecific binding. The reactions were stopped after a 30 min incubation at 25°C by adding 3.0 ml ice-cold 50 mM Tris-HCl pH 7.6 and rapid filtration over Whatman GF/B glass fibre

filters using a Brandel harvester, washed and counted as described (Wurch *et al.*, 1999). pK_D and B_{max} values were obtained from saturation binding studies performed as previously described (Wurch *et al.*, 1999). pIC₅₀ values for ligands as obtained from dose-response curves performed at six concentrations were converted into pK_i values as described (Wurch *et al.*, 1999).

Protein content

Membrane protein levels were estimated with a dye-binding assay using a Bio-Rad kit, bovine serum albumin was used as a standard (Bradford, 1976).

Materials

The pCR3.1 vector was from In Vitrogen (San Diego, U.S.A.). The ABI Prism 310 Genetic Analyser and the dichlororhodamine terminator cycle sequencing kit were purchased from Perkin Elmer (Foster City, U.S.A.). The Quick change sitedirected mutagenesis kit was from Stratagene (La Jolla, U.S.A.). CHO-K1 cells were obtained from ATCC (Rockville, U.S.A.). [3H]-RX 821002 (50 Ci mmol⁻¹) was obtained from Amersham (Les Ulis, France). Fluo-3 was obtained from Molecular Probes (Oregon, U.S.A.). Probenicid acid, clonidine, (-)-adrenaline and oxymetazoline were from Sigma (St. Louis, U.S.A.). 5bromo-6-(2-imidazolin-2-ylamino)quinoxaline tartrate (UK 14304), dexefaroxan, atipamezole and (+)-2-(2-ethoxy-2,3dihydro-benzo[1,4]dioxin-2-yl)-4,5-dihydro-1*H*-imidazole (RX 811059) were prepared intramuros. 6-Chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine (SKF 86466) was from Smith Kline Beecham (Herts, U.K.). Idazoxan and RX 821002 were from Reckitt and Colman (Kingston-upon-Hill, U.K.). Talipexole was a gift from Boehringer Ingelheim (Biberach an der Riss, Germany). d-Medetomidine was purchased from Smith Kline Beecham. Stock solutions of ligands were prepared at 10^{-3} M. Serial dilutions were made in the respective incubation buffer.

Results

Binding properties of Ser²⁰⁰Ala α_{2A} AR and Ser²⁰⁴Ala α_{2A} AR compared to wt α_{2A} AR

[3H]-RX 821002 saturation binding curves performed to membrane preparations of CHO-K1 cells transfected with

either a wt α_{2A} AR, mutant Ser²⁰⁰Ala α_{2A} AR or mutant Ser²⁰⁴Ala α_{2A} AR in the co-presence of $G_{\alpha 15}$ protein indicated for each receptor a single class of high affinity binding sites for $[^{3}H]$ -RX 821002. The pK_D value of $[^{3}H]$ -RX 821002 was twice enhanced at the mutant Ser²⁰⁰Ala α_{2A} AR, whereas it was 9 fold attenuated at the $Ser^{204}Ala \; \alpha_{2A} \; AR$ (Table 1). The binding capacity of [3H]-RX 821002 was also reduced by 78% at the Ser²⁰⁴Ala α_{2A} AR. Analysis of the binding profile for each of these α_{2A} ARs with a diverse series of α_2 AR ligands indicated a loss in affinity for the native agonist (-)-adrenaline at both mutant α_{2A} ARs. The binding affinity of the other ligands being investigated were either not affected or maximally 2.6 fold enhanced at the mutant $Ser^{200}Ala~\alpha_{2A}~AR$. The putative antagonists (+)-RX 811059, RX 821002, atipamezole, SKF 86466 and idazoxan showed a decreased affinity (6-15 fold) at the mutant Ser²⁰⁴Ala α_{2A} AR. In contrast, the binding affinities of the imidazoline derivatives oxymetazoline, d-medetomidine, clonidine and UK 14304, and the azepine derivative talipexole were either not affected or 2-3 fold higher at the mutant Ser²⁰⁴Ala α_{2A} AR (Table 2).

Ligand-mediated Ca^{2+} responses by $Ser^{200}Ala \alpha_{2A} AR$ compared to wt $\alpha_{2A} AR$

UK 14304 (1 μ M) produced a time-dependent increase in the intracellular Ca²⁺ concentration in CHO-K1 cells transiently co-transfected with a Ser²⁰⁰Ala α_{2A} AR and a G_{α 15} protein (Figure 1); its magnitude was about 2 fold greater compared to the UK 14304-mediated response by the wt α_{2A} AR. The kinetic properties of the UK 14304-mediated Ca²⁺ response

Table 1 $\,$ pK $_D$ and $\,B_{max}$ values of [^3H]-RX 821002 binding to wt and mutant α_{2A} AR

	$wt \alpha_{2A} AR$	Ser ²⁰⁰ Ala α _{2A} AR	$Ser^{204}Ala$ α_{2A} AR
pK _D B _{max} (pmol mg ⁻¹ protein)		8.90 ± 0.03 32.92 ± 4.08	

[³H]-RX 821002 saturation binding and Scatchard analysis to membrane preparations of CHO-K1 cells co-transfected with 10 μg of either wt α_{2A} AR, Ser²00Ala α_{2A} AR or Ser²04Ala α_{2A} AR and 10 μg of $G_{\alpha15}$ protein was performed as described in Methods. Data are presented as mean values±s.e.mean of three independent transfection experiments

Table 2 pK_i values of α_2 AR ligands for inhibition of [3 H]-RX 821002 binding to wt, Ser 200 Ala and Ser 204 Ala α_{2A} ARs in CHO-K1 cellular membranes

	Ser ²⁰⁰ Ala α_{2A} AR		Ser ²⁰⁴ Ala α_{2A} AR		$wt \alpha_{2A} AR$	
	pK_i	s.e.mean	pK_i	s.e.mean	pK_i	s.e.mean
(+)-RX 811059	8.84	0.03	7.81	0.11	8.86	0.12
RX 821002	8.66	0.01	7.57	0.14	8.57	0.08
Atipamezole	8.60	0.04	7.63	0.07	8.39	0.07
Dexefaroxan	8.20	0.02	7.10	0.06	8.18	0.07
Oxymetazoline	8.11	0.01	8.22	0.08	7.69	0.06
d-Medetomidine	7.95	0.02	7.60	0.07	7.58	0.08
SKF 86466	7.77	0.03	6.77	0.15	7.68	0.10
Idazoxan	7.73	0.03	6.46	0.09	7.63	0.08
Clonidine	6.84	0.01	6.54	0.04	6.91	0.09
UK 14304	6.58	0.02	7.31	0.01	6.82	0.13
Talipexole	6.37	0.02	6.23	0.06	6.12	0.05
(-)-Adrenaline	< 5.00		< 5.00		5.60	0.13

Membrane preparations were prepared from CHO-K1 cells co-transfected with either wt or mutant α_{2A} AR and $G_{\alpha15}$ protein as described in Table 1. Radioligand binding was performed at respective pK_D values (see Table 1) as described in Methods. Data are presented as mean values \pm s.e.mean of three independent transfection experiments.

were similar for both the wt and mutant $Ser^{200}Ala \alpha_{2A} AR$. A comparison between the Ca^{2+} responses of various α_2 AR agonists at the mutant $Ser^{200}Ala \alpha_{2A} AR$ in the co-presence of a $G_{\alpha 15}$ protein is illustrated in Figure 2. The corresponding

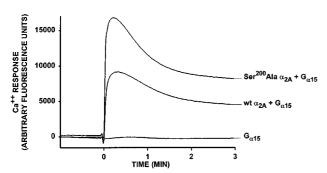
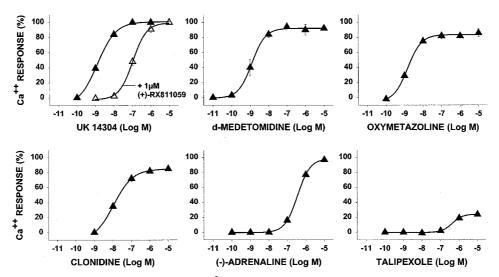



Figure 1 Comparison between kinetics of Ca^{2+} responses as mediated by UK 14304 in CHO-K1 cells transfected with either wt α_{2A} AR or Ser²⁰⁰Ala α_{2A} AR in combination with a $G_{\pi15}$ protein. Ca^{2+} responses were measured as described in Methods. Tracings were expressed in arbitrary fluorescence units and illustrate a representative experiment. The magnitude of Ca^{2+} response was 8033 ± 914 (n=51) and 15 498 ± 1431 (n=10) arbitrary fluorescence units for respectively the wt α_{2A} AR and Ser²⁰⁰Ala α_{2A} AR. The time of onset for maximal activation (15.4±1.2 s, n=10) and the residual activity upon 1 min of maximal activation (69.6±2.1%, n=10) for the Ser²⁰⁰Ala α_{2A} AR were not different from the properties at the wt α_{2A} AR.

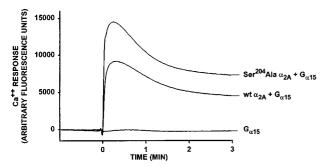
pEC₅₀ and E_{max} values are compared in Table 3 to the values as obtained under similar experimental conditions with the wt α_{2A} AR. (-)-Adrenaline showed still the capacity to maximally activate the Ser²⁰⁰Ala α_{2A} AR though with a 45 fold decrease in potency as compared to the wt α_{2A} AR. The Ca²⁺ response as mediated by d-medetomidine was similar to that of UK 14304 at both the wt and mutant Ser 200 Ala α_{2A} AR. Oxymetazoline and clonidine behaved more efficaciously at the Ser²⁰⁰Ala α_{2A} AR; their maximal response was enhanced by +29 and +23\% respectively. Talipexole displayed a weak partial agonist response at the Ser²⁰⁰Ala α_{2A} AR; its potency (71 fold) and maximal response (-59%) were attenuated. Each of these agonist-mediated Ca²⁺ responses was antagonized in a competitive manner by 1 μ M of the silent antagonist (+)-RX 811059; the pK_B values for the antagonism of the UK 14304 response by (+)-RX 811059 were similar for both the wt and mutant $Ser^{200}Ala~\alpha_{2A}~AR$

Ligand-mediated Ca^{2+} responses by $Ser^{204}Ala \ \alpha_{2A} \ AR$ compared to wt $\alpha_{2A} \ AR$

UK 14304 (1 μ M) also induced a Ca²⁺ response at the Ser²⁰⁴Ala α_{2A} AR with kinetics similar to the response mediated by the wt α_{2A} AR (Figure 3). Figure 4 shows agonist-dependent Ca²⁺ responses at the Ser²⁰⁴Ala α_{2A} AR. Ca²⁺ responses as mediated by UK 14304, d-medetomidine

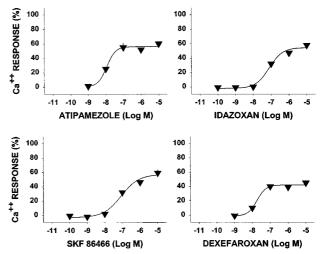
Figure 2 Comparison between α_2 AR agonist-induced Ca^{2+} responses as obtained in CHO-K1 cells co-transfected with a Ser²⁰⁰Ala α_{2A} AR and $G_{\alpha15}$ protein. Ca^{2+} responses were measured as described in Methods and expressed as a percentage of the maximal Ca^{2+} response induced by UK 14304 (1 μ M). Curves were constructed using mean values \pm s.e.mean obtained in 2–3 independent transfection experiments. pEC₅₀, pK_B and E_{max} values are summarized in Table 3.

Table 3 pEC_{50} , E_{max} and pK_B values of ligands' Ca^{2+} responses mediated by wt and mutant α_{2A} ARs in the co-presence of $G_{\alpha 15}$ protein in CHO-K1 cells


	Ser ²⁰⁰ Ala		Ser ²⁰⁴ Ala		wt†	
α_{2A} AR:	pEC_{50}	E_{max} (%)	pEC_{50}	E_{max} (%)	pEC_{50}	E_{max} (%)
UK 14304	8.81 ± 0.02	100	9.28 ± 0.08	100	8.89	96
UK 14304 plus $1 \mu M$ (+)-RX 811059	$7.94 \pm 0.10*$		$7.55 \pm 0.20*$		8.05*	
(-)-Adrenaline	6.41 ± 0.11	97 ± 1	5.66 ± 0.06	$33 \pm 5 \#$	8.06	100
d-Medetomidine	8.83 ± 0.24	94 ± 2	9.30 ± 0.14	97 ± 6	8.92	88
Oxymetazoline	8.70 ± 0.21	86 ± 5	8.29 ± 0.10	$52 \pm 5 \#$	8.57	57
Clonidine	7.81 ± 0.06	85 ± 0	8.43 ± 0.18	95 ± 1	8.24	62
Talipexole	6.24 ± 0.14	$24 \pm 3 \#$	6.09 ± 0.13	$15 \pm 2 \#$	8.09	83

 Ca^{2+} responses at $Ser^{200}Ala$ and $Ser^{204}Ala$ α_{2A} ARs were measured as described in Methods. Ligand-mediated responses are expressed as a percentage of the respective maximal response induced by UK 14304 (1 μ M) and values are given as mean values \pm s.e.mean*. pK_B value of (+)-RX 811059; †values are taken from Pauwels and Colpaert (2000); # P<0.05 versus UK 14304 value.

and oxymetazoline were similar at both the wt and mutant Ser²⁰⁴Ala α_{2A} ARs (Table 3). The response as mediated by clonidine was highly efficacious; its maximal response was enhanced by +33% compared to the wt α_{2A} AR. Otherwise, micromolar concentrations of (—)-adrenaline and talipexole only demonstrated a small Ca²⁺ effect at the Ser²⁰⁴Ala α_{2A} AR. Besides the agonists, most of the putative α_2 AR antagonists displayed intrinsic activity at nanomolar concentrations at the Ser²⁰⁴Ala α_{2A} AR (Figure 5). RX 811059 appeared to be the only antagonist with no observable intrinsic activity at this mutant α_{2A} AR. Its positive enantiomer antagonized in a potent manner (pK_B: 7.55 ± 0.20) the UK 14304-mediated response (Figure 4) in line with its binding affinity for the Ser²⁰⁴Ala α_{2A} AR (Table 2).


Ligand-mediated Ca^{2+} responses as controlled by mutant α_{2A} AR: $G_{\alpha 15}$ fusion proteins

Another set of Ca^{2+} experiments was performed with fusion proteins between either the $Ser^{200}Ala$ or $Ser^{204}Ala$ α_{2A} AR and

Figure 3 Comparison between kinetics of Ca^{2+} responses as mediated by UK 14304 in CHO-K1 cells transfected with either wt α_{2A} AR or Ser²⁰⁴Ala α_{2A} AR in combination with a $G_{\pi 15}$ protein. Ca^{2+} responses were measured as described in Methods. Tracings were expressed in arbitrary fluorescence units and illustrate a representative experiment. The magnitude of Ca^{2+} response was 8033 ± 914 (n=51) and $14\,180\pm1232$ (n=13) arbitrary fluorescence units for respectively the wt α_{2A} AR and Ser²⁰⁴Ala α_{2A} AR. The time of onset for maximal activation (16.5 ± 1.0 s, n=13) and the residual activity upon 1 min of maximal activation ($71.9\pm1.4\%$, n=13) for the Ser²⁰⁴Ala α_{2A} AR were not different from the properties at the wt α_{2A} AR.

a G_{\alpha15} protein in order to determine the ligand-mediated Ca²⁺ responses under controlled expression conditions at a receptor: G_{α} protein stoichiometry of 1.0. The kinetics of the UK 14304-mediated responses for the fusion proteins and the corresponding co-expression experiments are shown in Figure 6; both fusion proteins displayed a slower onset time (P < 0.05) and a maximal Ca2+ response with a lower magnitude (P<0.05). The attenuation of the Ca²⁺ response upon maximal activation was only significantly (P < 0.05) different between the mutant Ser²⁰⁴Ala α_{2A} AR co-expressed or fused with a $G_{\alpha 15}$ protein. Table 4 compares the agonist-mediated maximal Ca²⁺ responses as obtained with mutant Ser²⁰⁰Ala, Ser²⁰⁴Ala and wt α_{2A} ARs as fused with a $G_{\alpha 15}$ protein together with those obtained with the Asp⁷⁹Asn and Thr³⁷³Lys α_{2A} ARs. The degree of maximal activation by d-medetomidine and clonidine versus that of UK 14304 was enhanced at the Ser²⁰⁴Ala α_{2A} AR: $G_{\alpha 15}$, Asp⁷⁹Asn α_{2A} AR: $G_{\alpha 15}$ and Thr³⁷³Lys

Figure 5 Comparison between Ca^{2+} responses of various putative α_2 AR antagonists in CHO-K1 cells co-transfected with a Ser²⁰⁴Ala α_{2A} AR and $G_{\alpha15}$ protein. Ca^{2+} responses were measured as described in Methods and expressed as a percentage of the maximal Ca^{2+} response induced by UK 14304 (1 μ M). Curves were constructed using mean values \pm s.e.mean obtained in two independent transfection experiments. pEC₅₀ and E_{max} values are summarized in Table 5.

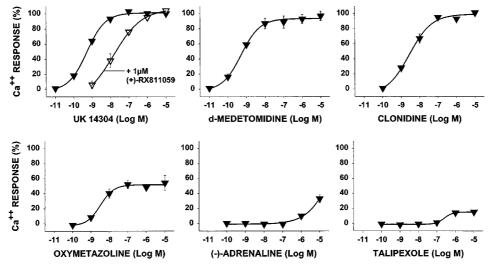
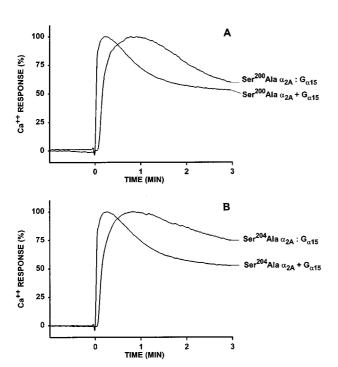



Figure 4 Comparison between α_{2A} AR agonist-induced Ca^{2+} responses as obtained in CHO-K1 cells co-transfected with a Ser 204 Ala α_{2A} AR and $G_{\alpha15}$ protein. Ca^{2+} responses were measured as described in Methods and expressed as a percentage of the maximal Ca^{2+} response induced by UK 14304 (1 μ M). Curves were constructed using mean values \pm s.e.mean obtained in 2–4 independent transfection experiments. pEC $_{50}$ pK $_{B}$ and E_{max} values are summarized in Table 3.

 α_{2A} AR: $G_{\alpha15}$ fusion proteins as compared to the wt α_{2A} AR: $G_{\alpha15}$ fusion protein. Oxymetazoline that appeared silent at the Ser 204 Ala α_{2A} AR: $G_{\alpha15}$, Asp 79 Asn α_{2A} AR: $G_{\alpha15}$ and wt α_{2A} AR: $G_{\alpha15}$ fusion proteins showed a partial agonist response at the Ser 200 Ala α_{2A} AR: $G_{\alpha15}$ and Thr 373 Lys α_{2A} AR: $G_{\alpha15}$ fusion proteins. The partial agonist response of talipexole at the wt α_{2A} AR: $G_{\alpha15}$ fusion protein was either fully abolished at

Figure 6 Comparison between kinetics of Ca²⁺ responses as mediated by UK 14304 in CHO-K1 cells transfected with either Ser²⁰⁰Ala or Ser²⁰⁴Ala α_{2A} AR fused or co-expressed with a $G_{\alpha15}$ protein. Ten μ g of either α_{2A} AR and $G_{\alpha15}$ protein or fusion protein was transfected. Ca²⁺ responses with 1 μ M UK 14304 were measured as described in Methods. Tracings were expressed in percentage of the respective maximal activation by UK 14304 (1 μ M). The magnitude of Ca²⁺ response was respectively 7568±2269 (n=5) and 10 861±980 (n=5) for the Ser²⁰⁰Ala α_{2A} AR: $G_{\alpha15}$ (A) and Ser²⁰⁴Ala α_{2A} AR: $G_{\alpha15}$ fusion proteins (B). The time of onset for maximal activation [35.5±4.0 s (n=4) and 42.4±6.2 s (n=5) for Ser²⁰⁰Ala α_{2A} AR: $G_{\alpha15}$ and Ser²⁰⁴Ala α_{2A} AR: $G_{\alpha15}$ fusion proteins] was significantly (P<0.05) slower than for the corresponding coexpression experiments. The residual activity upon 1 min of maximal activation was significantly different (P<0.05) between Ser²⁰⁴Ala α_{2A} AR: $G_{\alpha15}$ fusion protein (84.0±2.1%, n=5) versus co-expression condition (71.9±1.4%, n=13). No difference was observed for the Ser²⁰⁰Ala α_{2A} AR fused (79.0±3.5%, n=4) or co-expressed (69.6±2.1%, n=10) with a $G_{\alpha15}$ protein.

the Ser²⁰⁰Ala α_{2A} AR: $G_{\alpha 15}$ and Ser²⁰⁴Ala α_{2A} AR: $G_{\alpha 15}$ fusion proteins or highly efficacious at the Asp⁷⁹Asn α_{2A} AR: $G_{\alpha 15}$ and Thr³⁷³Lys α_{2A} AR: $G_{\alpha 15}$ fusion proteins. The response as mediated by (–)-adrenaline was respectively partial and absent at the Ser²⁰⁰Ala α_{2A} AR: $G_{\alpha 15}$ and Ser²⁰⁴Ala α_{2A} AR: $G_{\alpha 15}$ fusion proteins. None of the investigated α_2 AR antagonists revealed intrinsic activity at these fusion proteins (not shown).

Discussion

The present study reports on intrinsic activity for a diverse series of α_2 AR ligands by wt α_{2A} AR, mutant Ser²⁰⁰Ala and Ser²⁰⁴Ala α_{2A} AR as obtained by measuring Ca²⁺ responses *via* a $G_{\alpha 15}$ protein. The magnitude of the UK 14304-mediated Ca^{2+} response as elicited by a $G_{\alpha 15}$ protein was largest with both mutant $Ser^{200}Ala$ and $Ser^{204}Ala \; \alpha_{2A} \; ARs$ compared to the wt α_{2A} AR in both the co-expression and fusion protein experiments. Both wt and mutant α_{2A} ARs displayed similar kinetic data for their UK 14304-induced response in the copresence of a $G_{\alpha 15}$ protein. A slower onset of the Ca^{2+} response was apparent with each of the fusion proteins assembled by either a wt or a mutant α_{2A} AR and a $G_{\alpha 15}$ protein, though the reversal phase of the Ca2+ response followed almost similar Ca^{2+} kinetics compared to the co-expression of an α_{2A} AR with a $G_{\alpha 15}$ protein. Otherwise, the activation profiles of the wt and both mutant α_{2A} ARs as analysed by a series of α_2 AR ligands were clearly different. The agonists d-medetomidine and clonidine appeared most efficacious at the Ser²⁰⁴Ala α_{2A} AR, whereas oxymetazoline was also partially efficacious at the Ser²⁰⁰Ala α_{2A} AR. Talipexole was silent at both mutant α_{2A} ARs. (-)-Adrenaline was inactive or partially active at the Ser 204 Åla and Ser 200 Ala α_{2A} AR, respectively. (-)-Adrenaline has also been reported to be less efficacious on both inhibition and potentiation of forskolin-stimulated cyclic AMP formation at Ser²⁰⁰Ala and Ser²⁰⁴Ala α_{2A} ARs (Wang *et al.*, 1991). These observations with (-)-adrenaline are related to its lower binding affinity for both mutant α_{2A} AR (Table 2; Wang et al., 1991).

The other agonists being investigated did not display attenuated ligand binding properties. A different rank order of maximal Ca²⁺ responses to agonists with unmodified ligand binding properties was observed at the Ser²⁰⁰Ala α_{2A} AR (UK 14304>d-medetomidine>> oxymetazoline \simeq clonidine>> talipexole), compared to the Ser²⁰⁴Ala α_{2A} AR (UK 14304 \simeq d-medetomidine> clonidine> oxymetazoline \simeq talipexole) and wt α_{2A} AR (UK 14304>d-medetomidine> talipexole> clonidine> oxymetazoline> clonidine> cl

Table 4 E_{max} values of ligands' Ca^{2+} responses mediated by wt and mutant α_{2A} ARs fused with a $G_{\alpha15}$ protein in CHO-K1 cells

		E_{max} values (%)					
$\alpha_{2A} AR$:	Ser ²⁰⁰ Ala	Ser ²⁰⁴ Ala	$Asp^{79}Asn$	$Thr^{373}Lys$	wt^*		
UK 14304	100	100	67 ± 5	95±2†	97		
d-Medetomidine	71 ± 4	$93 \pm 3 \dagger$	91 <u>+</u> 9†	$101 \pm 7 \dagger$	76		
(−)-Adrenaline	41 ± 5	1 ± 1	100	100	100		
Oxymetazoline	34 ± 9	4 ± 2	15 ± 5	69 ± 5	10		
Clonidine	28 ± 8	66 ± 4	60 ± 5	$86 \pm 6 \dagger$	39		
Talipexole	2 ± 0	0 ± 0	93 ± 4†	$92 \pm 1 \dagger$	53		
RX 811059	2 ± 1	1 ± 0	1 ± 1	2 ± 1	2		

 Ca^{2+} responses at $Ser^{200}Ala~\alpha_{2A}~AR:G_{\alpha15}$ and $Ser^{204}Ala~\alpha_{2A}~AR:G_{\alpha15}$ fusion proteins were expressed *versus* the maximal activation induced by UK 14304 (1 μ M). Those mediated by $Asp^{79}Asn~\alpha_{2A}~AR:G_{\alpha15}$ and $Thr^{373}Lys~\alpha_{2A}~AR:G_{\alpha15}$ fusion proteins were expressed *versus* the maximal activation induced by (–)-adrenaline (10 μ M). Data are presented as mean values \pm s.e.mean of 4–16 independent transfection experiments. *values are taken from Pauwels *et al.* (2000a); †P>0.05~versus~UK~14304~or~(-)-adrenaline value.

Table 5 pEC₅₀ and/or E_{max} values of Ca^{2+} responses as mediated by putative α_2 AR antagonists by mutant α_{2A} ARs co-expressed with a $G_{\alpha 15}$ protein

	Ser ²⁰⁰ Ala	Ser ²⁰⁰ Ala Ser ²⁰⁴ Ala		Asp ⁷⁹ Asn*	Thr ³⁷³ Lys*	wt*	
$\alpha_{2A} AR$:	E_{max} (%)	pEC_{50}	E_{max} (%)	E_{max} (%)	E_{max} (%)	E_{max} (%)	
Atipamezole	6 ± 3	7.85 ± 0.11	60 ± 2	64	31	8	
SKF 86466	3 ± 2	7.09 ± 0.06	59 ± 4	29	48	9	
Idazoxan	4 ± 3	7.05 ± 0.05	58 ± 0	32	26	3	
Dexefaroxan	3 ± 2	7.54 + 0.02	45 + 0	21	14	2	
RX 811059	1 + 0	_	3 + 1	3	2	2	

 Ca^{2+} responses were measured as described in Table 3 and expressed either *versus* the maximal response as obtained by 1 μ M UK 14304 or 10 μ M (-)-adrenaline. Data are presented as mean values \pm s.e.mean of 8–11 independent transfection experiments. *values are taken form Pauwels and Colpaert (2000).

agonists at the α_{2A} AR, and that their activation may be affected in different ways by the mutations being investigated (Pauwels & Colpaert, 2000). We previously observed in coexpression experiments with a $G_{\alpha 15}$ protein (Pauwels and Colpaert, 2000) that the maximal amplitude of activation by dmedetomidine and clonidine versus that of (-)-adrenaline was not affected by the Asp⁷⁹Asn mutation in the second transmembrane domain of the α_{2A} AR. The activation was significantly lower for both UK 14304 and oxymetazoline in contrast to their high-efficacy responses at the Thr373Lys mutation in the third intracellular loop of the α_{2A} AR. Heterogeneity of Ca²⁺ responses as produced by different α₂ AR agonists is also observed by comparing the fusion proteins of the various mutant α_{2A} ARs (see Table 4). UK 14304 consistently acted as an efficacious agonist, whereas it is a partial agonist at the Asp⁷⁹Asn α_{2A} AR fusion protein. The structurally related imidazoline derivatives d-medetomidine and in particular clonidine display either fully efficacious or enhanced Ca2+ responses at the Asp79Asn, Ser204Ala and/or Thr³⁷³Lys α_{2A} AR fusion proteins. The imidazoline derivative oxymetazoline showed a partial agonist response at Ser²⁰⁰Ala and Thr³⁷³Lys α_{2A} AR fusion proteins. The azepine derivative talipexole yielded a highly efficacious response at the Asp⁷⁹Asn and Thr³⁷³Lys α_{2A} AR in contrast to its lack of agonist effect at the $Ser^{200}Ala$ and $Ser^{204}Ala$ α_{2A} AR fusion proteins. The response by the native agonist (-)-adrenaline was not affected by the Asp⁷⁹Asn and Thr³⁷³Lys α_{2A} AR fusion proteins. The effect of these mutations on α_{2A} AR function is presumably related to specific changes in the receptor conformation. The modified receptor conformation apparently affects differentially the activation of these α_2 AR agonists. It is clear that the mutations described herein differentially modulate E_{max} values of agonists belonging to the same chemical series, such as the imidazoline derivatives. It has been suggested that each agonist may induce a different receptor conformation or set of conformations, but the available evidence to this effect is sparse (see Colquhoun, 1998). Recently, Marjamäki et al. (1999) have combined targeted mutagenesis experiments with structural modelling to show that two molecules that covalently bind to α_{2A} AR, chloroethylclonidine and 2aminoethyl methanethiosulphonate hydrobromide, recognize two different receptor conformations.

Ligands previously characterized as antagonists at wt α_{2A} AR (Wurch *et al.*, 1999) also demonstrated no intrinsic activity at the Ser²⁰⁰Ala α_{2A} AR. In contrast, positive efficacy with a different rank order of maximal responses was observed (see Table 5 and Pauwels & Colpaert, 2000) for the Ser²⁰⁴Ala α_{2A} AR (atipamezole = SKF 86466 = idazoxan > dexefaroxan),

Asp⁷⁹Asn α_{2A} AR (atipamezole > idazoxan \simeq SKF 86466 > dexefaroxan) and Thr³⁷³Lys α_{2A} AR (SKF 86466> atipamezole \simeq idazoxan > dexefaroxan). These effects were only measured in the co-expression experiments with a $G_{\alpha 15}$ protein and not by the fusion proteins. This suggests the requirement of an enhanced $G_{\alpha 15}$ protein: α_{2A} AR density ratio to observe this positive efficacy (Pauwels et al., 2000a). The binding affinities of these ligands were unmodified at the Asp⁷⁹Asn and Thr 373 Lys α_{2A} AR in contrast to their attenuated affinity for the Ser 204 Ala α_{2A} AR. However, the positive efficacy for each of these ligands was measured at concentrations that corresponded with their binding affinity for the Ser²⁰⁴Ala α_{2A} AR. RX 811059, free of intrinsic activity, also showed a decreased binding affinity for the Ser²⁰⁴Ala α_{2A} AR. The Ser²⁰⁴Ala α_{2A} AR mutant demonstrates in a strong way the apparent positive efficacy; this activity could attain $\sim 60\%$ of that as measured with the efficacious agonist UK 14304. Dexefaroxan yielded the lowest level of positive efficacy for each of the mutants α_{2A} ARs. This ligand has been previously defined as an α_2 AR antagonist with low intrinsic agonist activity both in vitro and in vivo (Chopin et al., 1999). However, the dexefaroxan analogue, atipamezole, was efficacious at the Ser²⁰⁴Ala and Asp⁷⁹Asn α_{2A} ARs. Similar disparate results were obtained between the positive efficacy of idazoxan at each of the mutant α_{2A} ARs and the silent properties of its ethoxy-derivative RX 811059. Thus, even closely related compounds may act differently at the α_{2A} AR. It is conceivable that conformational alterations near the ligand-binding pocket may modify the nature of ligand: receptor interactions, such that some antagonists are capable of stabilizing an active conformation at the new binding interface generated by the mutation.

In conclusion, this study supports that most of the α_2 AR antagonists may actually possess partial agonist properties, which is augmented by the Asp⁷⁹Asn, Ser²⁰⁴Ala and Thr³⁷³Lys α_{2A} AR mutations. The data further suggest that several ligands activate the α_{2A} AR *via* a specific binding site, which can be unravelled by the mutations described in this study. The outcome that multiple molecular mechanisms may activate the α_{2A} AR opens perspectives for diverse signalling *via* a single α_{2A} AR subtype.

Dr Thierry Wurch is acknowledged for helpful discussion. We sincerely thank Frédéric Finana, Stéphanie Tardif, Claudie Cathala and Fabrice Lestienne for their excellent technical assistance. Stéphanie Cecco is acknowledged for expert secretarial assistance.

References

- AIRRIESS, C.N., RUDLING, J.E., MIDGLEY, J.M. & EVANS, P.D. (1997). Selective inhibition of adenylyl cyclase by octopamine via a human cloned α_{2A} -adrenoceptor. *Br. J. Pharmacol.*, **122**, 191–198.
- BRADFORD, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.*, **72**, 248–254.
- CHOPIN, P., COLPAERT, F.C. & MARIEN, M. (1999). Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. J. Pharmacol. Exp. Ther., 288, 798-804.
- COLQUHOUN, D. (1998). Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. *Br. J. Pharmacol.*, **125**, 924–947
- COTECCHIA, S., KOBILKA, B.K., DANIEL, K.W., NOLAN, R.D., LAPETINA, E.Y., CARON, M.G., LEFKOWITZ, R.J. & REGAN, J.W. (1990). Multiple second messenger pathways of α-adrenergic receptor subtypes expressed in eukaryotic cells. *J. Biol. Chem.*, **265**, 63–69.
- EASON, M.G., JACINTO, M.T. & LIGGETT, S.B. (1994). Contribution of ligand structure to activation of α_2 -adrenergic receptor subtype coupling to G_s . *Mol. Pharmacol.*, **45**, 696–702.
- FRASER, C.M., ARAKAWA, S., MCCOMBIE, W.R. & VENTER, J.C. (1989). Cloning, sequence analysis, and permanent expression of a human α₂-adrenergic receptor in Chinese hamster ovary cells. Evidence for independent pathways of receptor coupling to adenylate cyclase attenuation and activation. *J. Biol. Chem.*, **264**, 11754–11761.
- FRENCH, N. (1995). Alpha 2-adrenoceptors and I2 sites in the mammalian central nervous system. *Pharmacol. Ther.*, **68**, 175–208.
- HEIN, L. & KOBILKA, B.K. (1997). Adrenergic receptors from molecular structure to *in vivo* function. *Trends Cardiovasc. Med.*, 7, 137-145.
- HWA, J. & PEREZ, D.M. (1996). The unique nature of the serine interactions for α_1 -adrenergic receptor agonist binding and activation. J. Biol. Chem., **271**, 6322-6327.
- KUKKONEN, J.P., RENVAKTAR, A., SHARIATMADARI, R. & AKER-MAN, K.E.O. (1998). Ligand-and subtype-selective coupling of human alpha-2 adrenoceptors to Ca⁺⁺ elevation in Chinese hamster ovary cells. *J. Pharmacol. Exp. Ther.*, **287**, 667–671.
- LIMBIRD, L.E. (1988). Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. *FASEB J.*, **2**, 2686–2695.
- MACDONALD, E., KOBILKA, B.K. & SCHEININ, M. (1997). Gene targeting—homing in on α_2 -adrenoceptor-subtype function. Trends Pharmacol. Sci., 18, 211–219.

- MACNULTY, E.E., McCLUE, S.J., CARR, I.C., JESS, T., WAKELAM, M.J.O. & MILLIGAN, G. (1992). α₂-C10 adrenergic receptors expressed in rat-1 fibroblasts can regulate both adenylylcyclase and phospholipase D-mediated hydrolysis of phosphatidylcholine by interacting with pertussis toxin-sensitive guanine nucleotide-sensitive proteins. *J. Biol. Chem.*, **267**, 2149 2156.
- MARJAMÄKI, A., FRANG, H., PIHLAVISTO, M., HOFFRÉN, A-M., SALMINEN, T., JOHNSON, M.S., KALLIO, J., JAVITCH, J.A. & SCHEININ, M. (1999). Chloroethylclonidine and 2-aminoethyl methanethiosulfonate recognize two different conformations of the human α_{2A} -adrenergic receptor. *J. Biol. Chem.*, **274**, 21867 21872
- PAUWELS, P.J. & COLPAERT, F.C. (2000). Heterogenous ligand-mediated Ca⁺⁺ responses at wt and mutant α_{2A} -adrenoceptors suggest multiple ligand activation binding sites at the α_{2A} -adrenoceptor. *Neuropharmacology.*, in press.
- PAUWELS, P.J., FINANA, F., TARDIF, S., COLPAERT, F.C. & WURCH, T. (2000a). Agonist efficacy at the α_{2A} -adrenoceptor: $G_{\alpha15}$ fusion protein: an analysis based on Ca^{++} responses. *Naunyn-Schmiedeberg's Arch. Pharmacol.*, in press.
- PAUWELS, P.J., TARDIF, S., FINANA, F., WURCH, T. & COLPAERT, F.C. (2000b). Ligand-Receptor interactions as controlled by wild-type and mutant Thr³⁷⁰Lys α_{2B} -adrenoceptor $G_{\alpha 15}$ fusion proteins. *J. Neurochem.*, **74**, 375–384.
- RUDLING, J.E., KENNEDY, K. & EVANS, P.D. (1999). The effect of site-directed mutagenesis of two transmembrane serine residues on agonist-specific coupling of a cloned human α_{2A} -adrenoceptor to adenylyl cyclase. *Br. J. Pharmacol.*, **127**, 877–886.
- STRADER, C.D., SIGAL, I.S. & DIXON, D.A. (1989). Structural basis of β adrenergic receptor function. *FASEB J.*, **3**, 1825–1832.
- SZABADI, E. & BRADSHAW, C.M. (1996). Autonomic pharmacology of α_2 -adrenoceptors. *J. Psychopharmacol.*, **3**, 6–18.
- TIMMERMANS, P.B.M.W.M., CHIÚ, A.T. & THOOLEN, M.J.C. (1990). α-Adrenergic receptors. In *Comprehensive Medicinal Chemistry*. eds. Hansch, C., Sammes, P.G. & Taylor, J.B. Vol.3, pp. 133–185. Oxford, U.K., Pergamon Press.
- WANG, C.D., BUCK, M.A. & FRASER, C.M. (1991). Site-directed mutagenesis of α_{2A} -adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. *Mol. Pharmacol.*, **40**, 168–179.
- WURCH, T., COLPAERT, F.C. & PAUWELS, P.J. (1999). G-protein activation by putative antagonists at mutant Thr³⁷³Lys α_{2A} adrenergic receptors. *Br. J. Pharmacol.*, **126**, 939 948.

(Received March 2, 2000 Revised May 1, 2000 Accepted May 4, 2000)